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Abstract

Coset methods are used to construct the action describing the dynamics associated

with the spontaneous breaking of the local symmetries of AdSd+1 space due to the em-

bedding of an AdSd brane. The resulting action is an SO(2, d) invariant AdS form of

the Einstein-Hilbert action, which in addition to the AdSd gravitational vielbein, also

includes a massive vector field localized on the brane. Its long wavelength dynamics

is the same as a massive Abelian vector field coupled to gravity in AdSd space.
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1 Introduction

The dynamical degree of freedom of a probe AdSd brane embedded in an AdSd+1

target space is the Nambu-Goldstone world volume field φ(x), with xµ the AdSd

world volume coordinates. φ(x) describes the co-volume oscillatons of the brane

in AdSd+1 space. Its long wavelength dynamics is given by the reparametrization

invariant volume of the brane times the constant brane tension σ and is encoded in

an AdS form [1] of the Nambu-Goto action as

Γ = −σ
∫

ddx det e = −σ
∫

ddx det ē det N

= −σ
∫

ddx det ē coshd
√

m2φ2

√

1 − DmφηmnDnφ

cosh2 √m2φ2
. (1.1)

The induced vielbein e m
µ has a product form, e m

µ = ē n
µ N m

n where ē m
µ is the static

background vielbein for the AdSd world volume of the brane which yields a back-

ground world volume Ricci tensor R̄µν = m2(d− 1)ḡµν and hence a background Ricci

scalar R̄ = m2d(d − 1) with m2 > 0, while the φ dependent N m
n is given by

N n
m (x) = δ n

m cosh (
√

m2φ2(x))

+

[

√

(

cosh2 (
√

m2φ2(x)) −Drφ(x)ηrsDsφ(x)
)

− cosh (
√

m2φ2(x))
] Dmφ(x)Dnφ(x)

(Dφ)2(x)
, (1.2)

where the derivative Dm is defined as Dm = ē−1µ
m ∂µ. Expanding the action through

terms bilinear in φ gives

Γ = −σ
∫

ddx det ē
{

1 +
1

2
(m2d)φ2 − 1

2
∂µφḡµν∂νφ + · · ·

}

. (1.3)

It is seen that the Nambu-Goldstone boson carries the (E, s) = (d, 0) representation

[2] of SO(2, d − 1). That is, it has mass squared equal to m2d and hence energy d

in units of m2 while being spin zero [3]-[4]. It should be noted that the m2 = 0 case

reproduces the massless bosonic brane Nambu-Goto action.

The brane action is invariant under a nonlinear realization of the AdSd+1 target

space global isometry group of transformations SO(2, d). In order to have invariance

2



under general coordinate transformations, additional gravitational fields must be in-

troduced. The purpose of this paper is to construct the action of the world volume

localized gravitational fields when the brane is embedded in curved space [6]-[7]. In

short, the dynamics of the oscillating brane in curved space is described by a world

volume localized massless graviton represented by a dynamical veilbein e m
µ (x) and

a world volume localized vector field represented by a dynamical field Aµ(x). As a

consequence of the Higgs mechanism [8]-[9], the vector field is massive. The action for

these fields is derived in a model independent manner using coset methods in which

the AdSd+1 local symmetry group SO(2, d) is nonlinearly realized. In section 2, the

nonlinear local transformations of the Nambu-Goldstone fields are introduced via the

coset method [5]. The locally covariant Maurer-Cartan one-form building blocks for

the invariant action are obtained along with the introduction of the dynamical veil-

bein and vector fields. Derivatives of these Maurer-Cartan world volume vectors that

are covariant with respect to local Lorentz and Einstein transformations are defined

using the spin and related affine connections. In section 3, these covariant derivatives

are used to construct the low energy locally SO(2, d) invariant action. Exploiting the

spontaneously broken local (pseudo-) translation and Lorentz transformations, the

action is transformed to and analyzed in the unitary gauge. The physical degrees

of freedom so obtained are the dynamical world volume veilbein and massive vector

field.
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2 The Coset Construction

The embedding of AdSd space spontaneously breaks the symmetry group of the

AdSd+1 space from SO(2, d) to SO(2, d − 1). The low energy action governing

the dynamics of the Nambu-Goldstone modes associated with the symmetry break-

down can be constructed using coset methods. This technique begins by intro-

ducing the coset element Ω ∈ SO(2, d)/SO(1, d − 1) where SO(1, d − 1) corre-

sponds to the Lorentz structure (stability) group of transformations in AdSd. The

AdSd = SO(2, d − 1)/SO(1, d − 1) coordinates, xµ, act as parameters for pseudo-

translations in the world volume and are part of the coset so that

Ω(x) = eixµPµeiφ(x)Zeivµ(x)Kµ , (2.1)

The SO(2, d) generators can be expressed in terms of the unbroken SO(1, d − 1)

Lorentz subgroup representation content of the SO(2, d − 1) symmetry group of the

brane. The unbroken SO(2, d − 1) symmetry group is generated by the subgroup

Lorentz transformation generators Mµν , where µ, ν = 0, 1, 2, . . . , d−1 and the pseudo-

translations in AdSd space with charges Pµ. The remaining charges are the generating

elements of the SO(2, d)/SO(2, d−1) coset. They are the broken SO(2, d) symmetry

transformation charges. Z generates the broken SO(2, d) pseudo-translations in the

co-volume direction normal to the brane, while Kµ generates the broken AdSd+1

Lorentz transformations. Thus the SO(2, d) algebra can be written in terms of the

Pµ, Mµν , Z and Kµ charges as [1]

[Mµν , Mρσ] = −i (ηµρMνσ − ηµσMνρ + ηνσMµρ − ηνρMµσ)

[Mµν , Pλ] = i (Pµηνλ − Pνηµλ)

[Mµν , Kλ] = i (Kµηνλ − Kνηµλ)

[Mµν , Z] = 0

[Pµ, Pν ] = −im2Mµν

[Kµ, Kν ] = iMµν

[Pµ, Kν ] = iηµνZ

[Pµ, Z] = −im2Kµ
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[Z, Kµ] = iPµ. (2.2)

The coset so defined corresponds to a particular choice of coordinates, specifically de-

noted as xµ, for the AdSd world volume. The fields are also defined as functions of xµ.

The Nambu-Goldstone field φ(x) along with vµ(x) act as the remaining coordinates

needed to parametrize the coset manifold SO(2, d)/SO(2, d− 1).

Left multiplication of the coset elements Ω by an SO(2, d) group element g which

is specified by local infinitesimal parameters ǫµ(x), z(x), bµ(x), λµν(x) so that

g(x) = eiǫµ(x)Pµeiz(x)Zeibµ(x)Kµe
i
2
λµν(x)Mµν , (2.3)

results in transformations of the space-time coordinates and the Nambu-Goldstone

fields according to the general form [5]

g(x)Ω(x) = Ω′(x′)h(x). (2.4)

The transformed coset element, Ω′, is a function of the transformed world volume

coordinates and the total variations of the fields so that

Ω′ = eix′µPµeiφ′(x′)Zeiv′µ(x′)Kµ , (2.5)

while h is a field dependent element of the stability group SO(1, d − 1):

h = e
i
2
θµν(x)Mµν . (2.6)

Exploiting the algebra of the SO(2, d) charges displayed in equation (2.2), along with

extensive use of the Baker-Campbell-Hausdorf formulae, the local SO(2, d) transfor-

mations are obtained as

x′µ =

[

1 − z(x)
√

m2 tanh
√

m2φ2
sin

√
4m4x2

√
m2x2

]

xµ − λµν(x)xν

+
[

P µν
L (x) +

√
m2x2 cot

√
m2x2P µν

T (x)
]

ǫν(x)

+
tanh

√
m2φ2

√
m2

[

cos
√

m2x2P µν
L (x) +

√
m2x2

sin
√

m2x2
P µν

T (x)

]

bν(x)

φ′(x′) = φ(x) + z(x) cos
√

m2x2 + bµ(x)xµ sin
√

m2x2

√
m2x2
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v′µ(x′) = vµ(x) − λµν(x)vν −
m2

2

tan
√

m2x2/4
√

m2x2/4
(ǫµ(x)xν − ǫν(x)xµ)vν

−z(x)
m2

cosh
√

m2φ2

sin
√

m2x2

√
m2x2

[

P µν
L (v) +

√
v2 coth

√
v2P µν

T (v)
]

xν

+
√

m2
tan

√

m2x2/4
√

m2x2
tanh

√

m2φ2(bµ(x)xν − bν(x)xµ)vν

+
1

cosh
√

m2φ2

[

P µν
L (v) +

√
v2 coth

√
v2P µν

T (v)
]

×
[

cos
√

m2x2PLνρ(x) + PTνρ(x)
]

bρ(x)

θµν(x) = λµν(x) +
m2

2

tan
√

m2x2/4
√

m2x2/4
(ǫµ(x)xν − ǫν(x)xµ)

−z(x)
m2

cosh
√

m2φ2

sin
√

m2x2

√
m2x2

(vµxν − vνxµ)
tanh

√

v2/2
√

v2

−
√

m2
tan

√

m2x2/4
√

m2x2
tanh

√

m2φ2(bµ(x)xν − bν(x)xµ)

− 1

cosh
√

m2φ2

tanh
√

v2/2
√

v2

×
[

cos
√

m2x2P µρ
L (x)bρ(x)vν + P µρ

T (x)bρ(x)vν − (µ ↔ ν)
]

.

(2.7)

Here the transverse and longitudinal projectors for xµ are defined as

PTµν(x) = ηµν −
xµxν

x2

PLµν(x) =
xµxν

x2
(2.8)

and ηµν is the metric tensor for d–dimensional Minkowski space having signature

(+1,−1, . . . ,−1). In the above, the indices are raised, lowered and contracted using

ηµν . Both Nambu-Goldstone fields φ and vµ transform inhomogeneously under the

broken local translations Z and broken local Lorentz transformations Kµ. Thus these

broken transformations can be used to transform to the unitary gauge in which both

φ and vµ vanish. This will be done in section 3 in order to exhibit the physical degrees

of freedom in a more transparent fashion.

The nonlinearly realized SO(2, d) transformations induce a coordinate and field
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dependent general coordinate transformation of the world volume space-time coordi-

nates. From the xµcoordinate transformation given above, the AdSd+1 general coordi-

nate Einstein transformation for the world volume space-time coordinate differentials

is given by

dx′µ = dxνG µ
ν (x), (2.9)

with G µ
ν (x) = ∂x′µ/∂xν . The SO(2, d) invariant interval can be formed using the

metric tensor gµν(x) so that ds2 = dxµgµν(x)dxν = ds′2 = dx′µg′

µν(x
′)dx′ν where the

metric tensor transforms as

g′

µν(x
′) = G−1ρ

µ (x)gρσ(x)G−1σ
ν (x). (2.10)

The form of the vielbein (and hence the metric tensor) as well as the locally

SO(2, d) covariant derivatives of the Nambu-Goldstone boson fields and the spin con-

nection can be extracted from the locally covariant Maurer-Cartan one-form, Ω−1DΩ,

which can be expanded in terms of the generators as

Ω−1DΩ ≡ Ω−1(d + iÊ)Ω

= i
[

ωmPm + ωZZ + ωm
KKm +

1

2
ωmn

M Mmn

]

. (2.11)

Here Latin indices m, n = 0, 1, . . . , d − 1, are used to distinguish tangent space local

Lorentz transformation properties from world volume Einstein transformation prop-

erties which are denoted using Greek indices. In what follows Latin indices are raised

and lowered with use of the Minkowski metric tensors, ηmn and ηmn, while Greek

indices are raised and lowered with use of the curved AdSd metric tensors, gµν and

gµν . Since the Nambu-Goldstone fields vanish in the unitary gauge it is useful to

exhibit the one-form gravitational fields in terms of their pseudo-translated form

Ê = e+ixµPµEe−ixµPµ . (2.12)

The world volume one-form gravitational fields E have the expansion in terms of the

charges as

E = EmPm + AZ + BmKm +
1

2
γmnMmn. (2.13)
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Similarly expanding Ê as

Ê = ÊmPm + ÂZ + B̂mKm +
1

2
γ̂mnMmn, (2.14)

one finds the various fields are related according to

Ê =
[

cos
√

m2x2P m
Tn(x) + P m

Ln(x)
]

En − sin
√

m2x2

√
m2x2

γmnxn

Â = A cos
√

m2x2 − sin
√

m2x2

√
m2x2

Bmxm

B̂m =
[

P m
Tn(x) + cos

√
m2x2P m

Ln(x)
]

Bn + m2 sin
√

m2x2

√
m2x2

Axm

γ̂mn = γmn − m2 sin
√

m2x2

√
m2x2

(Emxn − Enxm)

−
(

cos
√

m2x2 − 1
)

[γmsP n
Ls(x) − γnsP m

Ls(x)] . (2.15)

Defining the one-form gravitational fields to transform as a gauge field so that

Ê ′(x′) = g(x)Ê(x)g−1(x) − ig(x)dg−1(x), (2.16)

the covariant Maurer-Cartan one-form transforms analogously to the way it varied

for global transformations:

ω′(x′) = h(x)ω(x)h−1(x) + h(x)dh−1(x), (2.17)

with h = e
i
2
θmn(x)Mmn . Expanding in terms of the SO(2, d) charges, the individual

one-forms transform according to their local Lorentz nature

ω′m(x′) = ωn(x)Λ m
n (θ(x))

ω′

Z(x′) = ωZ(x)

ω′m
K (x′) = ωn

K(x)Λ m
n (θ(x))

ω′mn
M (x′) = ωrs

M(x)Λ m
r (θ(x))Λ n

s (θ(x)) − dθmn(x). (2.18)

For infinitesimal transformations, the local Lorentz transformations are Λ m
n (θ(x)) =

δ m
n +θ m

n (x), while the infinitesimal local SO(2, d) transformations of the gravitational

one-forms take the form

Ê ′m = Êm + γ̂mnǫn − zB̂m + bmÂ − λmnÊn − dǫm
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Â′ = Â − ǫmB̂m + bmÊm − dz

B̂′m = B̂m + ǫmm2Â − zm2Êm + γ̂mnbn − λmnB̂n − dbm

γ̂′mn = γ̂mn + m2(ǫmÊn − ǫnÊm) − (bmB̂n − bnB̂m)

+(λmrγ̂n
r − λnrγ̂m

r) − dλmn. (2.19)

Using the Feynman formula for the variation of an exponential operator in con-

junction with the Baker-Campell-Hausdorff formulae, the individual world volume

one-forms appearing in the above decomposition of the covariant Maurer-Cartan one-

form are secured as

ωm = dxµe m
µ

= dxµE n
µ N m

n

ωZ = dxµωZµ

= dxµ cosh
√

v2E m
µ

[

−vm

tanh
√

v2

√
v2

cosh
√

m2φ2 + E−1ν
m (∂νφ + Aν)

]

ωm
K = dxµωm

Kµ

=

[

P mn
L (v) +

sinh
√

v2

√
v2

P mn
T (v)

]

(dvn − (ω̄Mnr + γnr)v
r)

+
[

P mn
L (v) + cosh

√
v2P mn

T (v)
]

[

(ω̄n + En)
√

m2 sinh
√

m2φ2

+Bn cosh
√

m2φ2

]

ωmn
M = dxµωmn

Mµ

= (ω̄mn
M + γmn) − cosh

√

m2φ2
sinh

√
v2

√
v2

[Bmvn − Bnvm]

+
√

m2
sinh

√
v2

√
v2

sinh
√

m2φ2 [vmP n
Ts(v) − vnP m

Ts(v)] (ω̄s + Es)

+
[

cosh
√

v2 − 1
]

[

vmdvn − vndvm

v2

− (P m
Lr(v)(ω̄nr

M + γnr) − P n
Lr(v)(ω̄mr

M + γmr))] .

(2.20)

In these expressions, the background AdSd covariant coordinate differential, ω̄m, and

spin connection, ω̄mn
M , are obtained from the AdSd coordinate one-form (e−ixmPm)d(eixnPn) =

i[ω̄mPm + 1
2
ω̄mn

M Mmn] as

ω̄m =
sin

√
m2x2

√
m2x2

P mn
T (x)dxn + P mn

L (x)dxn

9



ω̄mn
M =

[

cos
√

m2x2 − 1
] (xmdxn − xndxm)

x2
. (2.21)

The background differential ω̄m is related to the xµ world volume coordinate differ-

ential by the background veilbein ē m
µ (x) as

ω̄m = dxµē m
µ (x). (2.22)

Using equation (2.21) along with d = dxµ∂x
µ, the background veilbein is obtained as

ē m
µ (x) =

sin
√

m2x2

√
m2x2

P m
Tµ (x) + P m

Lµ (x). (2.23)

The covariant coordinate differential ωm is related to the world volume coordinate

differential dxµ by the vielbein e m
µ which in turn can be written in a factorized form

as the product of the dynamic vielbein E m
µ and the Nambu-Goto vielbein N m

n

E m
µ = ē m

µ + E m
µ + B m

µ

tanh
√

m2φ2

√
m2

N m
n = cosh

√

m2φ2
[

P m
Tn (v) + cosh

√
v2P m

Ln (v)
]

− cosh
√

v2E−1ν
n (∂νφ + Aν)v

m tanh
√

v2

√
v2

. (2.24)

The one-forms and their covariant derivatives are the building blocks of the locally

SO(2, d) invariant action. Indeed a mth-rank contravariant local Lorentz and nth-rank

covariant Einstein tensor, Tm1···mm
µ1···µn

is defined to transform as [10]

T
′m′

1
···m′

m

µ′

1
···µ′

n
(x′) = G−1µ1

µ′

1

(x) · · ·G−1µn

µ′

n
(x)Tm1···mm

µ1···µn
(x)Λ m′

1

m1
(θ(x)) · · ·Λ m′

m
mm

(θ(x)). (2.25)

For example, the veilbein transforms as e′mµ (x′) = G−1ν
µ (x)e n

ν (x)Λ m
n (θ(x)). Hence,

the veilbein and its inverse can be used to convert local Lorentz indices into world

volume indices and vice versa. Since the Minkowski metric, ηmn, is invariant under

local Lorentz transformations the metric tensor gµν

gµν = e m
µ ηmne

n
ν , (2.26)

is a rank 2 Einstein tensor. It can be used to define covariant Einstein tensors given

contravariant ones. Likewise, the Minkowski metric can be used to define covariant

local Lorentz tensors given contravariant ones.
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Since the Jacobian of the xµ → x′µ transformation is simply

ddx′ = ddx det G, (2.27)

it follows that ddx′ det e′(x′) = ddx det e(x) since det Λ = 1. Thus an SO(2, d)

invariant action is constructed as

Γ =
∫

ddx det e(x)L(x), (2.28)

with the Lagrangian an invariant L′(x′) = L(x). The invariants that make up the

Lagrangian can be found by contracting the indices of tensors with the appropriate

vielbein, its inverse and the Minkowski metric. For example ωZµg
µνωZν is an invariant

term used to construct the action.

Besides products of the covariant Maurer-Cartan one-forms, their covariant deriva-

tives can also be used to construct invariant terms of the Lagrangian. The covariant

derivative of a general tensor can be defined using the affine and related spin connec-

tions. Consider the covariant derivative of the Lorentz tensor Tmn

∇ρT
mn = ∂ρT

mn − ωm
MρrT

rn − ωn
MρrT

mr. (2.29)

Since the spin connection transforms inhomogeneously according to equation (2.18),

the covariant derivative of Tmn transforms homogeneously again

(∇ρT
mn)′ = G−1σ

ρ (∇σT rs)Λ m
r Λ n

s . (2.30)

Converting the Lorentz index n to a world index ν using the vielbein, the covariant

derivative for mixed tensors is obtained

∇ρT
mν ≡ e−1ν

n ∇ρT
mn = ∂ρT

mν − ωmr
MρT

ν
r + Γν

σρT
mσ, (2.31)

where the spin connection ωmn
Mρ and Γν

σρ are related according to [10]

Γν
σρ = e−1ν

n ∂ρe
n

σ − e−1ν
n ωnr

Mρe
s

σ ηrs. (2.32)

(Note that this relation as well follows from the requirement that the covariant deriva-

tive of the vielbein vanishes, ∇ρe
m

µ = 0.) Applying the above to the Minkowski metric

11



Lorentz 2-tensor yields the formula relating the affine connection Γρ
µν to derivatives

of the metric

∇ρη
mn = ∂ρη

mn − ωm
Mρrη

rn − ωn
Mρrη

mr = −ωmn
Mρ − ωnm

Mρ

= 0

= e m
µ e n

ν ∇ρg
µν

= e m
µ e n

ν

(

∂ρg
µν + Γµ

σρg
σν + Γν

σρg
µσ

)

. (2.33)

The solution to this equation yields the affine connection in terms of the derivative of

the metric [10] (the space is torsionless, hence the connection is symmetric Γρ
µν = Γρ

νµ)

Γρ
µν =

1

2
gρσ [∂µgσν + ∂νgµσ − ∂σgµν ] . (2.34)

Finally a covariant field strength two-form can be constructed out of the inhomo-

geneously transforming spin connection ωmn
Mµ

F mn = dωmn
M + ηrsω

mr
M ∧ ωns

M . (2.35)

Expanding the forms yields the field strength tensor

F mn
µν = ∂µω

mn
Mν − ∂νω

mn
Mµ + ηrsω

mr
Mµω

ns
Mν − ηrsω

mr
Mνω

ns
Mµ. (2.36)

It can be shown that F mn
µν = e−1nσe m

ρ Rρ
σµν where Rρ

σµν is the Riemann curvature

tensor

Rρ
σµν = ∂νΓ

ρ
σµ − ∂µΓρ

σν + Γλ
σµΓρ

λν − Γλ
σνΓ

ρ
λµ. (2.37)

The Ricci tensor is given by Rµν = Rρ
µνρ and hence the scalar curvature is an invariant

R = gµνRµν = −e−1µ
m e−1ν

n F mn
µν . (2.38)
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3 The Invariant Action

The covariant derivatives of the Maurer-Cartan one-forms provide additional build-

ing blocks out of which the invariant action is to be constructed. For example the

covariant derivatives of ωZν and ωn
Kν yield the mixed tensors

∇µωZν = ∂µωZν − Γρ
µνωZρ

∇µω
n
Kν = ∂µωn

Kν − Γρ
µνω

n
Kρ − ωnr

Mµω
s
Kνηrs. (3.1)

So proceeding, the invariant action describing the curved AdSd brane embedded in

curved AdSd+1 space has the general low energy form

Γ =
∫

ddx det e
{

Λ + κ2R +
1

2
ωZµ

[

(M2 + ξR)gµν + ζRµν
]

ωZν

−1

2
∇µωZν∇ρωZσ [Z1(g

µρgνσ − gµσgνρ) + Z2g
µνgρσ]

+
1

2
ωm

Kµω
n
Kν

[

ae−1µ
m e−1ν

n + be−1µ
n e−1ν

m + cgµνηmn

]

−ωm
Kµ∇νωZρ

[

αe−1µ
m gνρ + βe−1ν

m gµρ + γe−1ρ
m gµν

]}

. (3.2)

Many invariant terms are possible. The above includes a reduced set of terms which

leads to a consistent effective theory. The model can be further simplified by setting

the parameters ξ and ζ to zero. On the other hand, due to the Higgs mechanism,

the parameter M cannot be zero and is an independent scale in the theory. Since

the massive vector Aµ is a Proca field, it can be consistently quantized by further

setting Z2 to zero. Moreover, exploiting the identity ∂µ(det e T µ) = det e ∇µT
µ along

with the chain rule for covariant differentiation, integration by parts has been used to

eliminate redundant terms. A term of the form det ee−1µ
m ωm

Kµ has also been excluded

from the action since, when ωm
Kµ is eliminated as below, it will not result in any new

terms.

The action is independent of any terms containing derivatives acting on ωm
Kµ.

Hence varying the action with respect to ωm
Kµ yields an algebraic identity relating it
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to ∇µωZν as

ωm
Kµ

[

ae−1µ
m e r

σ + bδµ
σδr

m + ce−1µreσm

]

= ∇νωZρ

[

αgνρe r
σ + βe−1ρrδν

σ + γe−1νrδρ
σ

]

. (3.3)

Introducing ωm
Kµ = e−1νmBµν allows the solution

Bσρ = gρσ

1

(b + c)

[

α − a
(αd + β + γ)

(ad + b + c)

]

gµν∇µωZν

+
(β + γ)

2(b + c)
[∇σωZρ + ∇ρωZσ] +

(β − γ)

2(b − c)
[∇σωZρ −∇ρωZσ] . (3.4)

Substituting this back into the action allows ωm
Kµ to be eliminated in favor of terms

involving the vielbein and ωZµ yielding

Γ =
∫

ddx det e
{

Λ + κ2R +
1

2
ωZµ

[

(M2 + ξR)gµν + ζRµν
]

ωZν

−1

2
Z1∇µωZν∇ρωZσ(g

µρgνσ − gµσgνρ)
}

, (3.5)

where the form of the contractions of the product of two ∇µωZν terms are similar to

those of the initial action and hence the constants have just been redefined and the

effective Z2 has been set to zero. Exploiting the form of the covariant derivative of

the Z one-form in order to define the anti-symmetric field strength tensor Fµν ,

Fµν = (∇µωZν −∇νωZµ) = (∂µωZν − ∂νωZµ), (3.6)

the action becomes

Γ =
∫

ddx det e
{

Λ + κ2R +
1

2
ωZµ

[

(M2 + ξR)gµν + ζRµν
]

ωZν

−Z1

4
Fµνg

µρgνσFρσ

}

. (3.7)

According to equation (2.7), φ and vm transform inhomogeneously under the

broken translation and Lorentz transformation local transformations. Hence we now

fix the unitary gauge defined by φ = 0 = vm. So doing, the covariant one-forms take

a simplified form

ωm = dxµe m
µ = dxµE m

µ = dxµ(ē m
µ + E m

µ )
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ωZ = dxµAµ

ωm
K = dxµB m

µ

ωmn
M = (ω̄mn

M + γmn) = dxµ(ω̄mn
Mµ + γmn

µ ). (3.8)

Note that, in this gauge, equation (2.24) reduces to E m
µ = ē m

µ + E m
µ and N a

b = δ a
b .

Consequently the vielbein e m
µ = E b

µ N a
b = ē m

µ + E m
µ and thus depends only on the

gravitational fluctuation field, E m
µ , about the AdSd background vielbein ē m

µ and is

independent of the vector field. As such, the det e gives no contribution to the vector

mass even though it is the source of Nambu-Goldstone boson kinetic term in the

model with spontaneously broken global isometry. Instead, the mass of the vector,

M , is a completely new scale arising from an independent monomial. This realization

of the Higgs mechanism is strikingly different from what occurs when gauging internal

symmetries. In that case, when the symmetry is made local, the Nambu-Goldstone

boson kinetic term gets replaced by the square of the covariant derivative containing

the vector connection. In unitary gauge, the Nambu-Goldstone field vanishes leaving

the residual vector mass term whose scale is set by the Nambu-Goldstone decay

constant, a scale already present in the global model.

The action, equation (3.7), reduces to that of a massive vector field coupled to a

gravitational field with cosmological constant

Γ =
∫

ddx det e
{

Λ + κ2R − Z1

4
Fµνg

µρgνσFρσ +
1

2
Aµ

[

(M2 + ξR)gµν + ζRµν
]

Aν

}

,

(3.9)

with the field strength tensor Fµν for the vector field

Fµν = ∂µAν − ∂νAµ. (3.10)

The action was constructed by considering gravitational fluctuations about a back-

ground static AdS space and describes the embedding of a brane in that curved space.

The world volume action of the brane is equivalent to that of a world volume grav-

itational field Einstein-Hilbert action, with corresponding cosmological constant as

dictated by the field equations evaluated on the AdS background, and the action for

a massive vector field in that gravitating space. Furthermore, the action can equally
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well be used to describe a bosonic brane embedded in a space gravitating about a

background Minkowski space by taking the limit m2 → 0. The vector field remains

massive with the mass M still being an independent scale. Setting the parameters ξ

and ζ to zero, the world volume action for a brane embedded in curved space has the

form of a massive Abelian gauge theory coupled to gravity.
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